Galactose-Functionalized PolyHIPE Scaffolds for Use in Routine Three Dimensional Culture of Mammalian Hepatocytes

نویسندگان

  • Adam S. Hayward
  • Ahmed M. Eissa
  • Daniel J. Maltman
  • Naoko Sano
  • Stefan A. Przyborski
  • Neil R. Cameron
چکیده

Three-dimensional (3D) cell culture is regarded as a more physiologically relevant method of growing cells in the laboratory compared to traditional monolayer cultures. Recently, the application of polystyrene-based scaffolds produced using polyHIPE technology (porous polymers derived from high internal phase emulsions) for routine 3D cell culture applications has generated very promising results in terms of improved replication of native cellular function in the laboratory. These materials, which are now available as commercial scaffolds, are superior to many other 3D cell substrates due to their high porosity, controllable morphology, and suitable mechanical strength. However, until now there have been no reports describing the surface-modification of these materials for enhanced cell adhesion and function. This study, therefore, describes the surface functionalization of these materials with galactose, a carbohydrate known to specifically bind to hepatocytes via the asialoglycoprotein receptor (ASGPR), to further improve hepatocyte adhesion and function when growing on the scaffold. We first modify a typical polystyrene-based polyHIPE to produce a cell culture scaffold carrying pendent activated-ester functionality. This was achieved via the incorporation of pentafluorophenyl acrylate (PFPA) into the initial styrene (STY) emulsion, which upon polymerization formed a polyHIPE with a porosity of 92% and an average void diameter of 33 μm. Histological analysis showed that this polyHIPE was a suitable 3D scaffold for hepatocyte cell culture. Galactose-functionalized scaffolds were then prepared by attaching 2'-aminoethyl-β-D-galactopyranoside to this PFPA functionalized polyHIPE via displacement of the labile pentafluorophenyl group, to yield scaffolds with approximately ca. 7-9% surface carbohydrate. Experiments with primary rat hepatocytes showed that cellular albumin synthesis was greatly enhanced during the initial adhesion/settlement period of cells on the galactose-functionalized material, suggesting that the surface carbohydrates are accessible and selective to cells entering the scaffold. This porous polymer scaffold could, therefore, have important application as a 3D scaffold that offers enhanced hepatocyte adhesion and functionality.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Review on Application of Three Dimensional Culture and Testicular Scaffolds to Induction of in-Vitro Spermatogenesis

Introduction: Induction of in vitro spermatogenesis can be useful for infertility treatment in azoospermic patients and those undergoing chemotherapy. Different culture systems have been used to achieve this goal. This review study was performed with the aim to evaluate the application of 3D culture and testicular scaffolds in the establishment of in vitro spermatogenesis. In this review study...

متن کامل

A Self-Assembling Peptide Scaffold Functionalized for Use with Neural Stern Cells

The performance of a biological scaffold formed by the self-assembling peptide RADA16 is comparable to the most commonly used synthetic materials employed in the culture of neural stem cells. Furthermore, improvements in the performance of RADA16 have recently been made by appending the self-assembling peptide sequence with various functional motifs from naturally occurring proteins. The focus ...

متن کامل

Primary rat hepatocyte culture on 3D nanofibrous polymer scaffolds for toxicology and pharmaceutical research.

Primary rat hepatocytes are a widely used experimental model to estimate drug metabolism and toxicity. In currently used two-dimensional (2D) cell culture systems, typical problems like morphological changes and the loss of liver cell-specific functions occur. We hypothesize that the use of polymer scaffolds could overcome these problems and support the establishment of three-dimensional (3D) c...

متن کامل

Tissue Engineering Scaffolds: History, Types and Construction Methods

Tissue engineering is a rapidly growing research field, potentially capable of de novo tissue and organ construction. This approach is used to improve efficiency both in the tissue and cell culture. This method is required to provide bodies in vivo three-dimensional conditions outside of the body (ex vivo). To achieve this goal, given tissue cells are cultured on the tissue engineering scaffold...

متن کامل

Hyaluronan Benzyl Ester as a Scaffold for Tissue Engineering

Tissue engineering is a multidisciplinary field focused on in vitro reconstruction of mammalian tissues. In order to allow a similar three-dimensional organization of in vitro cultured cells, biocompatible scaffolds are needed. This need has provided immense momentum for research on "smart scaffolds" for use in cell culture. One of the most promising materials for tissue engineering and regener...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 14  شماره 

صفحات  -

تاریخ انتشار 2013